20여 년간 기업들이 고객의 공감을 이끌어내는 데 일조해 온 Lionbridge의 임직원이 바로 우리의 자긍심입니다

회사 소개
리더십
뉴스
인사이트
핵심 정보

당사의 전문가들은 고객의 산업과 그들이 직면하고 있는 과제를 잘 알고 있습니다.

생명과학
은행 및 금융
유통
전자 상거래
Lionbridge Games
자동차
CPG(소비재)
기술
산업 제조
법률 서비스
여행 및 숙박

Lionbridge Lainguage Cloud를 발판으로 삼아 로컬라이제이션 전체 단계와 콘텐츠 여정을 관리하세요.

Lainguage Cloud™ Platform
연결성
번역 커뮤니티
워크플로 기술
Smairt Content™
Smairt MT™
Smairt Data™

언어 선택 :

Finger points to circular rings

용어 관리를 통한 기계 번역 개선

뛰어난 용어 관리를 통한 기계 번역 결과물의 품질 향상

전문가와 일반 대중이 무료로 사용할 수 있는 일반 기계 번역(MT) 시스템을 활용하는 경우가 날로 늘어남에 따라 이러한 MT 엔진에서 번역 오류가 발생할 수 있음을 반드시 인식할 필요가 있습니다. 번역 품질이 나쁘거나 번역에 치명적인 오류가 있을 경우 비즈니스에 악영향을 끼칠 수 있습니다. 이때 효과적인 MT 용어 관리를 비롯한 여러 방법을 활용하면 MT 품질을 높일 수 있습니다.

기계 번역에서의 용어 관리 문제

용어 단위별로 각 개념과 표현들 사이에 복잡한 관계가 있어 용어는 기계 번역에서 가장 까다로운 문제로 남아 있습니다.

특정 도메인에서 무료 MT 시스템을 사용할 경우 특히 용어 측면에서 바람직하지 못한 결과를 초래할 수 있습니다. 이로 인한 여파는 의료 분야와 법률 분야에서 더욱 치명적일 수 있습니다.

특정 도메인의 말뭉치를 사용하여 MT 시스템을 학습시키면 저품질 번역 생성 문제를 어느 정도 방지할 수 있지만 일반 MT 시스템만으로는 용어의 일관성과 정확성을 보장하기 어렵습니다.

MT 엔진의 번역 품질은 무엇보다도 이중 언어 학습 말뭉치의 품질에 따라 달라집니다. 즉, 이러한 말뭉치에 관련 용어의 원어와 번역어 모두가 포함되어 있을 때만 용어를 정확히 번역할 수 있습니다.

고품질 번역을 위해서는 용어의 확률 분포를 바탕으로 하는 신경망 기계 번역(NMT) 시스템의 도입이 필수적이지만 이것만으로 고품질을 충분히 보장할 수 있는 것은 아닙니다. 말뭉치의 용어 빈도는 디코더에서 정확한 상당 어구를 얻을 수 있을 정도로 충분해야 합니다. 특정 용어의 빈도가 부족하면 상당 어구의 후보가 될 수 있을 정도로 충분한 가중치를 얻지 못하므로 해당 용어는 정확하게 번역되지 않습니다.

인물 사진들이 있는 구를 향해 손을 뻗은 모습

일반 MT 학습 결과가 잘못된 번역으로 이어지는 이유

일반 MT 시스템의 학습에는 다양한 콘텐츠의 방대한 말뭉치가 사용되는 경우가 많습니다. 그 결과, 가장 빈도가 높은 후보 용어 및 상당 어구가 될 가능성이 있는 용어가 번역 중인 용어와 다른 도메인에 속하게 될 수 있습니다. 이러한 경우 대상 언어에서 용어가 부정확하게 번역될 수 있습니다.

예를 들어 스페인어 fósforo는 불을 붙이는 데 쓰이는 성냥개비 또는 화학 원소인 으로 번역됩니다. 하지만 일반 MT 엔진에서는 해당 용어가 사용된 의도를 쉽게 구분할 수 없으므로 번역에 오류가 생길 수 있습니다.

이 문제는 맞춤화된 MT 시스템을 전문 용어가 포함된 도메인별 이중 언어 텍스트로 학습시킴으로써 해결할 수 있습니다.

그러나 용어를 일관성 있게 사용하지 않는다면 아무리 전문화된 텍스트로 엔진을 훈련시킨다 하더라도 번역의 정확성을 보장할 수 없습니다.

시장에서 제시하는 해결책

이 분야의 연구에서는 주석 방식을 사용하여 NMT 시스템에 언어 정보를 주입하는 방안을 제시합니다.

수동 또는 반자동 형식으로 주석을 구현하는 경우 용어집과 같은 사용 가능한 자료를 비롯해 시간, 비용, 사람에 의한 주석 작업 여부와 같은 제약 조건에 따라 품질이 달라집니다.

라이온브리지에서 제공하는 솔루션

라이온브리지(Lionbridge)의 Smairt MT™를 이용하면 원문과 대상 텍스트에 언어 규칙을 적용하는 것은 물론, 특정 프로파일에 추가된 번역 제외 용어(DNT) 및 용어 목록을 바탕으로 용어를 활용할 수 있습니다.

라이온브리지는 고객이 용어집을 만들고 유지할 수 있도록 지원하여 새로운 관련 용어를 추가하고 오래된 용어는 폐기하는 등 주기적으로 용어집을 관리합니다. 일단 Smairt MT에서 용어집이 생성되면 모든 MT 엔진에서 이 용어집을 사용할 수 있으므로 시간과 비용이 절약됩니다.

MT 프로젝트에 맞는 최적의 용어집 활용법

MT 프로젝트에서 용어집을 사용하는 일이 생각만큼 간단하지는 않습니다. 용어집을 올바로 사용하지 않으면 기계 번역의 전체 품질에 부정적인 영향을 미칠 수 있습니다. MT에서 용어집의 용어를 따르게 만드는 가장 좋은 방법은 MT를 학습시키는 것입니다.

학습된 MT 엔진과 맞춤 용어집, 전처리 및 후처리 규칙 식별을 조합하면 올바른 용어를 사용해 MT 결과물을 생성하고 고객의 문서와 유사한 스타일로 번역되도록 할 수 있습니다.

어두운 배경에 겹쳐진 점들과 3차원 큐브

기계 번역 솔루션에서 확인해야 할 용어 관리 기능

기계 번역 솔루션에서 용어 관리 기능을 평가할 때는 다음 기능이 있는지 확인해야 합니다.

  • 용어집 관리
  • 번역 제외 용어(DNT) 목록 관리
  • 추천 번역 및 승인 번역 관리
  • 용어집과 번역 메모리(TM) 가져오기를 통한 용어 및 문장 대량 업로드
  • 도메인별 또는 제품별 MT 엔진 프로파일 생성 및 해당 엔진 간 콘텐츠 자동 라우팅

이러한 기능을 함께 활용하면 번역 결과물의 품질이 향상됩니다.

라이온브리지 Smairt MT 솔루션의 작동 방식

커넥터를 통해 다양한 타사 MT 시스템과 통합되는 Smairt MT는 다음이 가능한 'MT 도구'라고 볼 수 있습니다.

  • Microsoft, Google, Amazon, DeepL, Yandex 등 주요 외부 MT 제공업체와 연결
  • 용어 관리 - 용어를 저장하고 해당 용어가 번역 결과물에 정확하게 반영될 수 있도록 용어집 또는 번역 제외 용어(DNT)를 즉시 추가 및 업데이트
  • 사용자가 원문 텍스트나 MT 결과물을 수정하여 알려진 문제를 해결하고 MT 품질을 향상시킬 수 있도록 언어 규칙을 적용

라이온브리지는 고객 용어집의 용어와 해당 용어가 학습 말뭉치와 MT 결과물에 사용된 방식 사이의 불일치를 식별할 수 있는 또 다른 자동화 기능도 보유하고 있습니다. 이러한 자동화 기능은 학습 말뭉치나 이후 MT 결과물에서 승인 용어를 따르지 않는 사례를 식별하여 수정할 수 있도록 지원합니다.

필요한 용어가 MT에 없는 것으로 확인될 경우 자동으로 DNT, 제품명, 특정 주요 도메인 또는 브랜드 용어 등이 포함된 용어집을 사용하도록 제안됩니다.

용어집 작성 및 사용을 위한 추가 팁

기계 번역 결과를 개선하기 위해서는 용어집을 작성할 때 다음 지침을 따르는 것이 좋습니다.

  • 용어집에는 원문 용어가 나타나는 모든 사례에 체계적으로 사용할 수 있는 용어만 추가합니다. 이 지침은 전문 용어, 고객의 승인을 얻은 단어 및 기술 용어에 적용되는 경우가 많습니다.
  • 하나의 원문 용어에 여러 개의 번역이 존재하는 경우 용어집에는 하나의 번역만 추가합니다.
  • 주로 명사구를 사용합니다. 여러 단어로 이루어진 용어나 산업별 용어, 고객별 제품명의 경우 명사구를 사용하는 것이 가장 좋습니다.
  • 한 문장에 여러 개의 용어 항목이 들어 있으면 번역 품질에 영향을 미칠 수 있으므로 일반 용어나 보통 용어는 용어집에 추가하지 않습니다.

문의하기

지금 바로 라이온브리지에 문의하여 귀사의 용어 관리 및 효율적인 MT 활용에 어떤 지원이 필요한지 알아보세요.

linkedin sharing button

Yolanda Martin, Janette Mandell
작성자
Yolanda Martin, Janette Mandell
  • #technology
  • #blog_posts
  • #translation_localization