Nos collaborateurs sont notre richesse. Ils aident de nombreuses sociétés à satisfaire leurs clients depuis plus de 20 ans. 

À propos de nous
Direction
Actualités
Ressources et Points De Vue | Blog
Informations fondamentales

Nos experts sont au fait de l'évolution de votre secteur d'activité et des défis que vous devez relever.

Sciences de la Vie/Médical
Banque et Finance
Commerce en Ligne
E-Commerce
Jeux Video
Automobile
Biens de Consommation
Technologie
Industriel
Juridique
Tourisme

Exploitez la plateforme Lionbridge Lainguage Cloud pour prendre en charge votre localisation de bout en bout et le cycle de vie du contenu

Lainguage Cloud™ Plateforme
Connectivité
Communauté de traduction
Technologie de flux de travail
Smairt Content™
Smairt MT™
Smairt Data™

SÉLECTIONNER LA LANGUE :

People congregating in a building as seen through a diamond grid

L'avenir du marketing numérique mondial : le rôle des biais et du langage non inclusif dans la localisation

Les spécialistes du marketing peuvent renforcer l'attrait de leur marque de même que l'image de leur entreprise grâce à un langage accueillant

Découvrez la troisième partie de la série L'avenir du marketing numérique mondial, qui étudie l'impact de la pandémie de COVID-19 sur la transformation et le marketing numériques, dans un contexte où les entreprises s'efforcent d'offrir une expérience cohérente sur une multitude de canaux et de marchés. La première partie détaille la façon dont un nouveau parcours de contenu aidera les distributeurs à s'adapter au marché très concurrentiel. La deuxième partie offre des conseils pour mettre en place une stratégie de contenu multimarché avec succès.

Vous vous souvenez peut-être du contrecoup subi par la société de vêtements H&M il y a quelques années, après avoir utilisé un enfant noir comme modèle pour un sweat à capuche arborant le slogan « coolest monkey in the jungle » (« le singe le plus cool de la jungle ») sur la poitrine. Cette campagne avait suscité des accusations de racisme, ainsi qu'une mauvaise presse. Une star qui s'était associée à la marque a l'abandonnée sans ménagement. La société a retiré le produit du marché et a publié des excuses. C'est le type de scénario que les spécialistes du marketing s'efforcent à tout prix d'éviter.  

Cet exemple démontre les conséquences indésirables auxquelles les entreprises peuvent être confrontées en cas de langage offensant. Mais il ne s'agit pas un cas isolé. Le public a accusé Zara d'être insensible envers les intolérants au gluten au regard de sa chemise qui demandait : “Are You Gluten Free?” (« Êtes-vous sans gluten ? »). D'autres ont critiqué certaines marques de luxe pour des images manquant de tact dans leurs créations.      

Les mots sont puissants. Ils peuvent être utilisés pour promouvoir l'harmonie et la bonne volonté, mais peuvent aussi créer des divisions parmi les gens. Les spécialistes du marketing ont des raisons à la fois éthiques et financières de maîtriser leur langage. Pour transmettre un ton chaleureux, les spécialistes du marketing doivent éviter tout langage ouvertement offensant et insensible. Ils doivent également éliminer les biais moins évidents et implicites et favoriser l'inclusion de personnes d'origines diverses. Les marques peuvent atteindre ces objectifs grâce à une utilisation réfléchie du langage dans les produits et les supports marketing destinés au public. Le public est de plus en plus attentif à ces efforts ou à l'absence de tels efforts. 

Lorsqu'il s'agit d'une seule langue, il est déjà difficile de mettre en œuvre ces initiatives. Cela devient encore plus difficile lorsque plusieurs langues sont impliquées. Lionbridge peut vous aider à produire un contenu attrayant qui trouve un écho auprès de tous vos publics.  

Qu'est-ce qu'un biais et en quoi consiste le langage inclusif ?

Le biais est un jugement qui conduit quelqu'un vers une option, une nationalité ou une idée qui est généralement négative ou préjudiciable. Il est codifié dans le langage et les expressions que nous utilisons, à la fois consciemment, comme biais explicite, et inconsciemment, comme biais implicite. 

Si nous sommes de plus en plus conscients des biais de ce type, leur ancrage profond dans notre éducation et dans notre langue les rendent parfois difficiles à détecter. Malgré tous nos efforts, il peut être impossible d'éliminer complètement les biais inconscients. Toutefois, nous nous devons d'essayer.  

Les préjugés et l'inclusivité jouent de plus en plus un rôle central pour les marques, tandis que nous continuons à lutter contre la pandémie de COVID-19 et son impact durable. À mesure que les entreprises migrent en ligne les expériences de leurs clients et de leurs employés, le contenu qu'elles créent devient leur principal moyen d'interaction. Par exemple, Statista a mis en avant une enquête d'août 2020 révélant que les achats en ligne de médicaments en vente libre et d'articles ménagers ont augmenté de plus de 45 % par rapport aux tendances pré-COVID. Plus que jamais, les consommateurs sont exposés au contenu en ligne des entreprises. 

Le langage inclusif favorise un sentiment d'appartenance. Il s'attaque aux préjugés et aux biais en réduisant le poids et l'importance d'une description à partir de l'identification d'une personne. Par exemple, nous pouvons atteindre l'inclusivité en faisant d'abord référence à la personne et ensuite à son handicap ou à sa différence. La mention d'une « personne avec un trouble d'apprentissage » met d'abord l'accent sur la personne, alors que l'identification de quelqu'un comme un « apprenant lent » l'assimile à un problème. 

La même approche s'applique aux personnes qui appartiennent à un groupe religieux, national, politique ou social. L'accent mis sur l'aspect humain favorise un environnement où chacun peut se sentir inclus et participer librement. 

Admettre l'existence d'un biais est une première étape importante vers le traitement du problème. Les entreprises peuvent lutter contre les biais à différents niveaux. Le recours au langage inclusif lors de la création de contenu est une stratégie importante. 

Pourquoi les spécialistes du marketing devraient-ils se concentrer sur les biais implicites et le langage inclusif ?

S'il est difficile de créer un langage culturellement inclusif et d'éliminer les biais explicites et implicites dans la traduction, il est clairement dans l'intérêt d'une entreprise d'essayer. En plus de faire preuve de respect et de responsabilité, de tels efforts peuvent aider les entreprises à élargir leur clientèle, conforter la confiance et la fidélité envers leur marque, renforcer leur réputation et, à terme, améliorer leurs résultats. 

Dernièrement, certains mouvements sociaux ont joué un rôle important dans les attentes des consommateurs en matière d'inclusion. Par exemple, les rassemblements et les marches dirigés par le mouvement Black Lives Matter ont largement influencé les mœurs de la société. Même ceux qui ne participent pas activement à ce type de manifestations s'attendent toujours à voir et à entendre des messages publicitaires destinés à un éventail démographique plus large. 

Ces attentes étaient déjà largement répandues avant même l'apogée des manifestations de Black Lives Matter. Selon un  rapport Adobe de 2019, 61 % des Américains considèrent comme importante la diversité dans la publicité et 38 % font davantage confiance aux marques qui incarnent la diversité. Les consommateurs y sont attentifs, faut-il encore le prouver ? En 2020, les adultes américains ont désigné Nike comme la meilleure marque en matière de diversité publicitaire, suivie de Coca-Cola, Google, Apple et Dove, selon une étude d'Adobe rapportée par eMarketer.   

Hors des États-Unis, les consommateurs sont également à l'affût des efforts des marques en matière de diversité. Selon un rapport de 2019 sur les produits de luxe élaboré par Mintel, plus de la moitié des acheteurs en Allemagne, en Italie, en France, en Espagne, en Chine et au Royaume-Uni estiment que les marques de luxe ne font pas suffisamment preuve de diversité dans leurs publicités.

Les marchés diversifiés ont un énorme pouvoir d'achat. L'élimination des barrières entre vos clients et vous leur permettra de se reconnaître dans votre produit et augmentera leur probabilité d'achat. 

Comment les campagnes publicitaires et autres initiatives mettant en vedette la diversité de la voix, de l'inclusion et de l'image se sont-elles développées ?

Si nous regardons de près les actions de certains des principaux détaillants internationaux et prestataires de services, nous constatons une évolution consciente vers l'inclusivité qui prend clairement de l'ampleur :

  • Apple et Google ont remplacé des termes comme « liste noire » et « liste blanche » par des termes plus neutres comme « liste d'autorisation » et « liste de blocage » pour être plus inclusifs.
  • La Houston Association of REALTORS® et certains constructeurs ont remplacé le terme « master » (« maître »/« maîtresse »), associé à l'esclavage, par le terme « principal » / « principale » pour décrire les chambres et les salles de bain.
  • Japan Airlines a été la première compagnie aérienne asiatique à utiliser un langage neutre en termes de genre sur les vols et dans les aéroports. Au lieu de s'adresser aux passagers en tant que « mesdames/messieurs », la compagnie aérienne demande l'attention de tous les passagers. D'autres compagnies aériennes internationales ont déjà pris des mesures similaires.
  • ASOS, une marque de vêtements basée à Londres, a mis en œuvre neuf initiatives pour lutter contre le racisme. Parmi ses efforts, elle a lancé une stratégie de diversité et d'inclusion, en ajoutant des marques appartenant à des Noirs à leurs offres et en proposant une formation dédiée, abordant notamment les biais, à l'attention des managers et des comités de recrutement.  

La question a également retenu l'attention d'ADWEEK, qui encourage les spécialistes du marketing à créer davantage de contenus inclusifs

Pourquoi certaines langues se prêtent-elles plus que d'autres à l'inclusivité ? 

La neutralité de genre est un moyen de favoriser le sentiment d'inclusion. L'objectif n'est pas de supprimer complètement le genre mais de réduire l'impact négatif de certains termes et expressions liés au genre. 

Or, il est plus facile d'atteindre la neutralité de genre dans certaines langues que dans d'autres.

  • Dans certaines langues non genrées comme le finnois, le turc, le japonais et d'autres langues asiatiques, la neutralité est très facile à formuler étant donné qu'il n'y a pas de genre grammatical à observer.
  • Cette neutralité est également facile dans les langues de genre naturel comme l'anglais et le chinois. Si ces langues contiennent des pronoms genrés, les noms ne sont pas genrés.
  • Avec certaines langues genrées comme le français, le portugais, l'espagnol, l'arabe et l'hébreu, la neutralité est difficile en raison des pronoms et des noms genrés. Dans ces langues, lorsque les traducteurs recherchent des formulations neutres, celles-ci sont souvent maladroites.

Il est important de tenir compte de ces facteurs lors de la préparation du contenu à traduire. Cela permettra d'éviter l'apparition de problèmes pendant le processus de localisation.

Quelles stratégies les spécialistes du marketing peuvent-ils mettre en place pour éviter les biais et promouvoir l'inclusivité dans leur contenu multilingue ?

Assurez-vous que votre contenu est produit correctement dès le début

Lorsque votre audience est internationale, votre contenu source doit impérativement être inclusif, tenir compte des différences culturelles et éviter tout biais. Cela évitera que des textes défectueux soient traduits dans d'autres langues et qu'ils soient vus et examinés sur tous les réseaux sociaux. 

En cas de transgressions, les marques peuvent en subir les conséquences à long terme. Les maladresses marketing sont souvent indélébiles. Elles montrent combien il est difficile de rebondir après une erreur. Les dommages peuvent être évités, à condition d'accorder une attention particulière à la production d'un contenu source correct et d'en garantir une localisation efficace. En outre, en se concentrant sur le perfectionnement du contenu dès le début du processus, les spécialistes du marketing numérique peuvent détecter une erreur dans la source et éviter sa correction sur tous les autres marchés, ainsi que les pertes d'argent et de temps associées.   

Il est néanmoins difficile d'éviter les biais. Cela est dû au fait qu'ils sont souvent très subtils. Les créateurs de contenu n'ont parfois pas conscience de tels biais. Leur détection peut être particulièrement difficile car les mêmes mots peuvent être considérés comme appropriés dans un contexte mais non inclusifs dans un autre. 

Par exemple, qualifier des femmes adultes de « poulettes » ou de « cocottes » dans un texte publicitaire est susceptible d'attirer les critiques, tandis que dire « ma poulette ! » ou « ma cocotte » à une amie ne ferait probablement pas sourciller.  Comprendre ces subtilités est primordial pour tout créateur de contenu.  

Investir dans la formation

Les spécialistes du marketing peuvent former leurs rédacteurs de contenu à l'existence des biais. Chez Lionbridge, des efforts sont déployés pour promouvoir l'inclusivité lors de la traduction, en ajoutant des instructions pertinentes dans le guide stylistique de chaque projet. Lors de l'intégration, les linguistes sont testés sur ces instructions pour s'assurer qu'elles sont respectées.

Se tourner vers l'automatisation

S'il est difficile de détecter les biais, vous n'avez pas besoin de vous reposer uniquement sur les humains. La technologie peut également s'avérer un outil particulièrement utile. Les détecteurs d'inclusivité et de biais aident à garantir un contenu conforme, respectueux et équitable.

Jusqu'à récemment, il n'était pas possible de s'appuyer sur des automatisations capables de détecter les biais. En effet, elles étaient difficiles à développer. Cependant, les progrès de l'intelligence artificielle (IA) et des technologies de traitement du langage naturel ont permis la création de nombreux outils efficaces dans la détection d'un langage biaisé, susceptible d'être ignoré par les humains en raison de ses subtilités. Ces outils recourent souvent à l'apprentissage automatique et de à vastes corpus de données pour évaluer l'intention du texte et permettre aux entreprises d'identifier tout langage inapproprié et non inclusif. 

Ces solutions fonctionnent généralement de l'une des deux manières suivantes :

  • Des suggestions en temps réel sont affichées au fur et à mesure que le contenu est rédigé et l'auteur doit décider d'accepter ou non ces suggestions.
  • Les contrôles de contenu en termes de gouvernance permettent aux entreprises de détecter des éléments de contenu non conformes aux instructions.

En juin 2020, Microsoft Word a ajouté une nouvelle fonctionnalité à son vérificateur de grammaire fourni avec l'abonnement Microsoft 365. Cette nouvelle fonctionnalité détecte le langage d'exclusion et suggère une autre formulation. Google s'attache à proposer des invites de langue inclusives sur sa plate-forme G-Suite, lesquelles formuleront des alternatives aux termes identifiés comme discriminatoires ou inutilement genrés. De son côté, Lionbridge dispose désormais d'une solution automatisée pour détecter tout contenu source qui ne respecte pas les instructions et autres normes. Nous vous en dirons plus sur cette offre Smairt™ Content plus loin dans cet article.

Les outils d'automatisation relatifs aux biais sont efficaces uniquement si les données utilisées pour les entraîner le sont également. Cependant, ces outils deviendront de plus en plus importants à mesure que l'accent sera placé sur l'inclusivité et que la technologie se perfectionnera.

Comment fonctionne la détection de biais et la détection de langage non inclusif ?

Les outils qui détectent les biais et le langage non inclusif s'appuient sur un grand nombre de technologies. Les plus simples utilisent une liste de termes et de sujets qui ne devraient pas être inclus dans le contenu. Les plus sophistiqués utilisent des technologies d'intelligence artificielle et d'apprentissage automatique, déduisent le sens du contenu et déterminent s'il est inapproprié dans un contexte donné. Ceci est possible grâce à des réseaux neuronaux et à des modèles de langage étendus, qui aident les machines à comprendre les relations complexes et subtiles entre différents mots et phrases dans le texte.

Surtout, ces détecteurs identifient les problèmes dès le début pour aider les spécialistes du marketing à diffuser le contenu plus rapidement et à réduire les coûts de retouche en aval.

Comment Lionbridge aide-t-elle les entreprises à garantir un contenu inclusif et exempt de biais ?

Lionbridge a toujours cherché à supprimer les biais explicites du contenu et a mis en place des outils et des solutions pour aider les entreprises à éliminer également les biais implicites.

Planification et création de contenu

Lionbridge aide les entreprises à planifier et à créer du contenu fondé sur l'inclusivité. Avant même que les entreprises ne commencent à créer du contenu, Lionbridge peut les aider à mettre en place un processus permettant d'éviter les biais.

Préparer un texte à la localisation en limitant au maximum les biais implique un examen attentif dès le départ. Les experts de Lionbridge sont conscients des différences culturelles, ce qui permet d'obtenir un contenu traduit ou localisé qui trouve un écho auprès des personnes du marché cible.

Comprendre les différences culturelles

Tous les pays ne sont pas d'accord sur ce qui est considéré comme un langage offensant. Par exemple, des linguistes italiens affirment que la version localisée du terme « blacklist » (mot figurant sur la liste des interdits d'Apple) ne serait pas considérée comme offensante par un public italien, car l'Italie et les États-Unis n'ont pas la même histoire en ce qui concerne l'esclavage. En outre, pour les linguistes, imposer les mœurs culturelles des États-Unis ne servirait qu'à aliéner le public italien.

La tolérance envers un langage inclusif qui doit être pris en compte lors de la localisation du contenu varie d'un pays à l'autre. Par exemple, les langues scandinaves ont des directives juridiques détaillées qui encouragent l'utilisation et l'adoption généralisée d'un langage inclusif à tous les niveaux. En revanche, d'autres pays, comme le Portugal ou certains pays d'Amérique du Sud, résistent à de tels efforts. Le Ministre français de l'Éducation a annoncé, cette année, que l'utilisation du langage inclusif serait interdite dans les écoles. L'agence gouvernementale a affirmé qu'une langue neutre en termes de genre nuit à la compréhension du français. 

Lionbridge est expert dans l'art de répondre aux besoins de chaque public cible afin d'éviter la création de contenu qui ne serait pas authentique.

Technologie

Lionbridge s'efforce en permanence de réduire les biais implicites. En tant que leader en technologies de localisation, nous tirons parti de la traduction automatique et de l'IA. Nous nous appuyons sur notre vaste corpus de données organisées pour rendre l'IA intelligente et lui apprendre à utiliser un langage inclusif.

L'utilisation de glossaires et de guides de style permet de préciser les mots ouvertement offensants, tels que les blasphèmes, ainsi que les termes plus subtilement codés. Nos nouveaux algorithmes exclusifs Smairt™ Content empêchent tout langage inapproprié de se glisser dans le contenu traduit.

L'automatisation de Smairt™ Content de Lionbridge vérifie le contenu autour de 120 aspects linguistiques différents. Il met en évidence, dans votre contenu source, les problèmes qui peuvent nécessiter des corrections avant de passer à l'étape suivante. Si les algorithmes détectent des défauts dans le contenu source, le texte n'est pas envoyé en localisation. De cette façon, les entreprises peuvent résoudre les problèmes une fois pour toutes dans la source. Elles évitent alors de dépenser du temps et de l'argent pour corriger les erreurs déclinées dans toutes les langues. Les entreprises ont toujours la possibilité d'envoyer le contenu signalé en localisation. Dans certains cas, il peut être judicieux de noter le problème et de l'analyser plus tard.

Ces algorithmes de pointe font désormais partie de la Lionbridge Locaⁱlization Platform™. Cette plateforme intervient à chaque étape du parcours du contenu et nous aide à atteindre une grande précision lors de la localisation.

Nous consacrons des ressources à la recherche et au développement afin de progresser, en permanence, dans les technologies favorisant un résultat optimal.

Services de qualité linguistique

Les services de qualité linguistique (LQS) de Lionbridge fournissent des évaluations d'assurance qualité dans le contenu traduit et localisé afin de garantir l'adéquation locale des produits et services. LQS implique une vérification rigoureuse du matériel traduit par rapport à des critères de qualité qui incluent un langage inclusif lorsque celui-ci est souhaité.

LQS évalue, annote et valide le contenu afin qu'il puisse être utilisé pour rendre les systèmes intelligents encore plus intelligents. Les linguistes LQS utilisent des métriques de qualité multidimensionnelles (MQM) standard, un cadre d'évaluation rigoureux utilisé pour évaluer le contenu traduit. Les résultats de la traduction sont ensuite mis en correspondance avec des analyses de données qui offrent à l'équipe un point de référence pour améliorer la qualité du résultat. Le contenu finalisé est ensuite introduit dans la mémoire de traduction (MT), qui continue d'affiner et d'améliorer le contenu global.

Comment repérer le langage non inclusif

Savez-vous vraiment comment identifier les biais et le langage non inclusif ? Vous en « rendez-vous simplement compte lorsque vous l'entendez » ? La prochaine fois que vous avez un doute, posez-vous ces questions pour vérifier votre choix de mots.

DEMANDEZ-VOUS : Est-ce le mot approprié ?

COMMENT DÉTERMINER L'ADÉQUATION : Remplacez le mot en question par une comparaison utilisant la même phrase.

EXEMPLE : Si simple, même votre grand-mère peut l'utiliser ! En comparaison avec : Si facile, même un novice peut l'utiliser !

CONCLUSION : « Grand-mère » est un choix de mot offensant dans ce contexte. Novice n'est pas un choix de mot offensant.

 

DEMANDEZ-VOUS : Est-ce le bon public ?

COMMENT DÉTERMINER L'ADÉQUATION : Utilisez la phrase devant un public différent.

EXEMPLE : Mon manager est un « esclavagiste ». Vous sentez-vous à l'aise de dire cela devant vos collègues caucasiens ? Qu'en est-il devant vos collègues noirs ? Peu probable.

CONCLUSION : « Esclavagiste » est un choix de mot offensant.

 

DEMANDEZ-VOUS : S'agit-il d'un stéréotype racial/national ?

COMMENT DÉTERMINER L'ADÉQUATION : Remplacez la race/nationalité par une autre race/nationalité dans la phrase pour tester si vous devez ou non inclure une race/nationalité dans votre texte.

EXEMPLE : Les « Asiatiques » sont bons en maths. Diriez-vous que les « Nord-américains » sont bons en maths ? Probablement pas.

CONCLUSION: La phrase « Les Asiatiques sont bons en maths » est un stéréotype racial.

Les dirigeants de Lionbridge ont encore beaucoup à dire sur les biais implicites et l'inclusivité. Ils ont identifié certaines tendances parmi la clientèle de Lionbridge et proposent des idées pour surmonter les obstacles qui entravent la création de contenu inclusif. Pour en savoir plus, consultez notre blog, Réduire les biais implicites.

Contactez-nous

Vous souhaitez vous assurer que votre contenu est inclusif et exempt de tout langage biaisé ? Contactez-nous .

Comment repérer le langage non inclusif

Savez-vous vraiment comment identifier les biais et le langage non inclusif ? Vous en « rendez-vous simplement compte lorsque vous l'entendez » ? La prochaine fois que vous avez un doute, posez-vous ces questions pour vérifier votre choix de mots.

DEMANDEZ-VOUS

COMMENT DÉTERMINER L'ADÉQUATION

EXEMPLE

CONCLUSION

Est-ce le mot approprié ?

Remplacez le mot en question par une comparaison dans une phrase similaire.

Si simple, même votre grand-mère peut l'utiliser !

En comparaison avec :

Si facile, même un novice peut l'utiliser !

« Grand-mère » est un choix de mot offensant dans ce contexte. Novice n'est pas un choix de mot offensant.

Est-ce le bon public ?

Utilisez la phrase devant un public différent.

Mon manager est un « esclavagiste ».

Vous sentez-vous à l'aise de dire cela devant vos collègues caucasiens ?

Qu'en est-il devant vos collègues noirs ?

Probablement pas.

« Esclavagiste » est un choix de mot offensant.

S'agit-il d'un stéréotype racial/national ?

Remplacez la race/nationalité par une autre dans la phrase pour tester si vous devez ou non inclure une race/nationalité dans votre texte.

Les « Asiatiques » sont bons en maths

Diriez-vous que les « Nord-américains » sont bons en maths ?

Probablement pas.

La phrase « Les Asiatiques sont bons en maths » est un stéréotype racial.

Les dirigeants de Lionbridge ont encore beaucoup à dire sur les biais implicites et l'inclusivité. Ils ont identifié certaines tendances parmi la clientèle de Lionbridge et proposent des idées pour surmonter les obstacles qui entravent la création de contenu inclusif. Pour en savoir plus, consultez notre blog, Réduire les biais implicites.

Contactez-nous

Vous souhaitez vous assurer que votre contenu est inclusif et exempt de tout langage biaisé ? Contactez-nous.

linkedin sharing button
  • #blog_posts
  • #retail
  • #translation_localization

Jennifer Truluck et Kajetan Malinowski avec Janette Mandell
AUTHOR
Jennifer Truluck et Kajetan Malinowski avec Janette Mandell