Grazie alla nostra rete di collaboratori, da oltre 20 anni aiutiamo le aziende a connettersi con i loro clienti. 

Chi siamo
Leadership
Notizie
Approfondimenti
Dati principali

Il nostro orgoglio è il nostro personale, che aiuta le aziende a entrare in risonanza con i propri clienti per oltre 20 anni.

Life Science
Settore bancario e finanziario
Distribuzione
E-Commerce
Lionbridge Games
Automobilistico
Beni di consumo confezionati
Tecnologia
Produzione industriale
Servizi per il settore legale
Viaggi e turismo

Sfruttate Lionbridge Lainguage Cloud per supportare le esigenze di localizzazione end-to-end e il ciclo di vita dei contenuti

Lainguage Cloud™ Piattaforma
Connettività
Translation Community
Tecnologia per il flusso di lavoro
Smairt Content™
Smairt MT™
Smairt Data™

SELEZIONARE LA LINGUA:

Analisi dei motori di traduzione automatica

Gli esperti Lionbridge esaminano le prestazioni dei principali motori di traduzione automatica e condividono informazioni utili sulle tendenze più innovative del settore.

Quanta importanza le grandi aziende tecnologiche danno alla traduzione automatica? Che cosa fanno per distinguersi dalla concorrenza? Quali motori hanno le prestazioni migliori in un dato mese o una lingua specifica? Queste sono alcune delle domande alle quali gli esperti di traduzione automatica di Lionbridge provano a dare una risposta ogni mese. Acquisite le informazioni necessarie per investire al meglio nella traduzione automatica.

Executive summary per ogni mese:

Ottobre 2022 — Traduzione automatica e formalità del linguaggio

Settembre 2022 — Uso della terminologia per migliorare la qualità della traduzione automatica

Agosto 2022 — Evitare gli errori catastrofici durante la traduzione automatica

Luglio 2022 — Classifica delle lingue per la traduzione automatica

Giugno 2022 — Analisi accurata della qualità della traduzione automatica

Maggio 2022 — Prestazioni di Amazon e Yandex nel mese di maggio

Aprile 2022 — Prestazioni di Yandex in aprile

Marzo 2022 — Valutazioni comparative personalizzate della traduzione automatica

Febbraio 2022 — Il futuro della traduzione automatica neurale (NMT)

Gennaio 2022 — Prestazioni dei motori di traduzione automatica a gennaio

Dicembre 2021: Lionbridge aggiunge la traduzione automatica di Yandex allo strumento comparativo di valutazione della qualità della traduzione automatica.

Novembre 2021: Bing Translator apporta alcuni miglioramenti

Ottobre 2021: progressi del motore di traduzione automatica di Amazon

Settembre 2021: Amazon apporta alcuni miglioramenti alla qualità della traduzione automatica

Agosto 2021: principali aziende tecnologiche e sviluppo dei rispettivi motori di traduzione automatica

Ottobre 2022

Questo mese vogliamo spostare l'attenzione sul livello di formalità del linguaggio e su quanto sia difficile, ma non impossibile, ottenere buoni risultati quando si usa la traduzione automatica (MT).

I motori di traduzione automatica (MT) possono produrre risultati errati e incoerenti per quanto riguarda la formalità. Perché? I modelli di traduzione automatica in genere restituiscono una singola traduzione per ogni segmento di input. Quando il segmento di input è ambiguo, il modello deve scegliere una traduzione tra diverse opzioni valide, indipendentemente dal pubblico di destinazione. Questa scelta può portare a traduzioni incoerenti o con un livello di formalità non corretto.

È particolarmente difficile ottenere l'output corretto quando la lingua di origine ha meno livelli di formalità rispetto a quella di destinazione. Lingue come l'italiano hanno ad esempio modi formali ben definiti (tu, lei, voi), mentre l'inglese no.

Sebbene la maggior parte dei sistemi di traduzione automatica non supporti la formalità del linguaggio o i parametri di genere, stiamo assistendo ad alcuni progressi. Al momento, DeepL (API) e Amazon (console e SDK) offrono funzionalità per il controllo della formalità. Smairt MT™ di Lionbridge, una soluzione di traduzione automatica di livello aziendale, consente l'applicazione di regole linguistiche al testo di destinazione al fine di produrre traduzioni automatiche con lo stile o il livello di formalità desiderato.

È fondamentale tradurre il testo di origine in modo efficace per soddisfare le esigenze del pubblico di destinazione e a tale scopo è necessario che nell'output della traduzione automatica venga usato un linguaggio formale o informale in modo appropriato. Le traduzioni che risultano "spente" o, peggio ancora, brusche possono allontanare il vostro pubblico.

Leggete il nostro blog per saperne di più sulla traduzione automatica e sul linguaggio formale e informale.

- Yolanda Martin, specialista nella traduzione automatica di Lionbridge


Settembre 2022

L'uso della traduzione automatica (MT) offre numerosi vantaggi, ma è necessario procedere con cautela. I motori di traduzione automatica generici possono produrre traduzioni errate e, soprattutto, possono causare risultati indesiderati dal punto di vista terminologico per domini specifici. L'impatto può essere particolarmente dannoso per settori come quelli medico e legale. Ci sono tuttavia alcuni accorgimenti che consentono di migliorare l'output della traduzione automatica.

L'uso della terminologia può consentire di migliorare la qualità della traduzione automatica e ottenere traduzioni accurate e coerenti.

È molto importante eseguire il training dei sistemi di traduzione automatica personalizzati con testi bilingue specifici del dominio che includano terminologia specializzata. Tuttavia, anche se si esegue il training con testi specializzati, non si può avere la sicurezza di ottenere traduzioni accurate se la terminologia non viene usata in modo coerente. La ricerca in quest'area propone di inserire le informazioni linguistiche nei sistemi di traduzione automatica neurale (NMT). L'implementazione manuale o semiautomatica delle annotazioni dipende dalle risorse disponibili, come i glossari, e dai vincoli, ad esempio in termini di tempo, costi e disponibilità di annotatori specializzati.

La soluzione Lionbridge Smairt MT™ consente l'applicazione di regole linguistiche al testo di origine e di destinazione, nonché l'applicazione della terminologia in base a elenchi di termini da non tradurre (DNT) e glossari aggiunti a un profilo specifico. Aiutiamo i nostri clienti a creare e gestire i glossari, che vengono regolarmente perfezionati per includere termini nuovi e pertinenti ed eliminare la terminologia obsoleta. Dopo essere stati creati e inseriti in Smairt MT, i glossari possono essere usati per tutti i motori di traduzione automatica, risparmiando tempo e denaro.

L'uso dei glossari per i progetti di traduzione automatica non è così semplice come potrebbe sembrare. I glossari, se usati in modo non appropriato, possono influire negativamente sulla qualità complessiva della traduzione automatica. Il modo migliore per applicare la terminologia corretta nella traduzione automatica è eseguire il training dei motori di traduzione. La combinazione di motori di traduzione automatica sottoposti a training, personalizzazione dei glossari e identificazione delle regole di pre-elaborazione e post-elaborazione consente di ottenere un output di traduzione automatica contenente la terminologia corretta e con uno stile simile a quello della documentazione del cliente.

Leggete il nostro blog per altre informazioni sull'uso della terminologia per migliorare l'output della traduzione automatica.

- Yolanda Martin, specialista nella traduzione automatica di Lionbridge


Agosto 2022

Poiché le aziende si affidano sempre più spesso alla traduzione automatica (MT) come procedura standard, i dipendenti devono cercare di prevenire la diffusione di errori catastrofici.

Gli errori catastrofici sono più problematici degli errori di traduzione automatica standard, che riguardano una tipologia di errore correlata a caratteristiche linguistiche, come l'ortografia, la grammatica o la punteggiatura. Con errori catastrofici si intendono quegli errori che vanno oltre l'aspetto linguistico e si verificano quando l'output del motore di traduzione devia pericolosamente dal messaggio previsto. La errate informazioni o i malintesi che ne conseguono possono potenzialmente causare alle aziende problemi di reputazione, finanziari o legali e possono portare a conseguenze negative per la sicurezza pubblica o la salute. È essenziale trovare modi per identificare questi errori e impedire che compromettano le comunicazioni.

Lionbridge applica specifici controlli di qualità automatizzati nei testi tradotti per rilevare gli errori critici preservando la velocità della traduzione automatica e riducendo la necessità dell'intervento umano.

Questi metodi automatizzati consentono di rilevare:

  • Significati opposti tra il testo originale e quello tradotto
  • Parole offensive, volgari o altamente sensibili
  • Traduzioni errate di nomi propri di individui e organizzazioni che sono anche parole comuni

Per proteggere maggiormente le aziende da errori catastrofici, è necessario che i professionisti informatici migliorino la tecnologia di traduzione automatica esistente per prevenire errori di questo tipo. Fino a quando ciò non avverrà, è possibile usare la tecnologia automatizzata per identificare i potenziali problemi, rivedere frasi problematiche e promuovere l'accuratezza durante il processo di traduzione.

Leggete il nostro blog per un esame più approfondito degli errori catastrofici provocati dalla traduzione automatica.

—Luis Javier Santiago, MT Group Leader, e Rafa Moral, Lionbridge Vice President, Innovation

Luis Javier Santiago
Rafa Moral

Luglio 2022

Google NMT, Bing NMT, Amazon, DeepL, Yandex: quale motore è il migliore? I dati del mese scorso, e l'attuale tendenza generale, mostrano che i principali motori offrono prestazioni simili. Ecco perché vale la pena considerare fattori aggiuntivi quando si sviluppa la strategia di traduzione automatica, ad esempio la facilità con cui i motori di traduzione automatica traducono combinazioni linguistiche specifiche.

Identificando le problematiche che i motori riscontrano nella gestione di combinazioni linguistiche specifiche, potrete allocare il budget in modo ottimale quando pianificate i costi di traduzione per diverse lingue. Sarà ad esempio necessario un maggiore impegno per ottenere traduzioni di alta qualità per combinazioni linguistiche complesse. Comprendere la complessità della lingua può essere utile per prendere le decisioni aziendali.

Classificare le lingue in base alla traducibilità non è un processo semplice, tuttavia per la valutazione è possibile usare metriche diverse. La distanza di edit, ovvero il numero di modifiche apportate da uno specialista di post-editing per fare in modo che il testo finale abbia una qualità al livello della traduzione umana, può fornire informazioni sulla complessità e sulla traducibilità (tramite traduzione automatica) per ogni combinazione linguistica.

La maggior parte delle lingue romanze, come portoghese, spagnolo, francese e italiano, richiede meno modifiche per raggiungere alti livelli di qualità in caso di traduzione dall'inglese. Abbiamo identificato queste lingue di destinazione come le più facili da gestire automaticamente e quindi occupano i primi quattro posti nella classifica di traducibilità. L'ungherese e il finlandese, due lingue uraliche, sono lingue più complesse e nella classifica occupano il 27° e il 28° posto. L'estone, un'altra lingua della stessa famiglia, è tra le lingue più complesse. Questi risultati, basati su milioni di frasi elaborate da Lionbridge, sottolineano l'importanza delle famiglie linguistiche per la qualità della traduzione automatica.

Sebbene il confronto tra le lingue presenti dei limiti, la classifica può fornire alcuni spunti interessanti per gestire al meglio i progetti multilingue. Leggete il nostro blog per conoscere tutta la classifica delle lingue stilata da Lionbridge.

- Rafa Moral, Lionbridge Vice President, Innovation 


Giugno 2022

A giugno abbiamo osservato un leggero miglioramento nelle traduzioni russe da parte del motore di traduzione automatica Yandex e un piccolo calo nei risultati di traduzione con Microsoft Bing. Questi cambiamenti sono degni di nota o si tratta di risultati trascurabili e senza significato? Per scoprirlo, abbiamo analizzato i risultati sotto un diverso punto di vista.

Invece di usare un unico standard di riferimento per misurare la distanza dalla traduzione automatica a una traduzione umana "perfetta", abbiamo usato più traduzioni di riferimento. Abbiamo confrontato ogni traduzione automatica con dieci traduzioni svolte da traduttori professionisti. Adottando questo approccio, le piccole fluttuazioni nella qualità della traduzione di Yandex e Microsoft Bing di giugno sono scomparse. Possiamo quindi concludere che non ci sono stati cambiamenti nella qualità della traduzione automatica. I risultati di giugno sono stabili.

A volte i dati e le relative rappresentazioni grafiche possono essere fuorvianti. Questo accade spesso quando ci sono piccole differenze tra misurazioni diverse. È buona norma usare più di un approccio per valutare i dati e interpretare i risultati in modo accurato.

Per i prossimi mesi prevediamo pochi cambiamenti nella qualità dei motori di traduzione automatica. Useremo questa sezione per fornire analisi e osservazioni generali in relazione alla traduzione automatica. Il mese prossimo faremo un confronto tra combinazioni linguistiche sottoposte a traduzione automatica. Valuteremo se è possibile usare i dati per classificare le lingue e le famiglie linguistiche in base alla complessità della traduzione automatica e determineremo se la traduzione automatica funziona meglio con alcune combinazioni linguistiche specifiche.

- Rafa Moral, Lionbridge Vice President, Innovation 


Maggio 2022

Per i motori di traduzione automatica questo è stato principalmente un altro mese statico.

Abbiamo notato che Amazon ha apportato un miglioramento incrementale nella modalità di gestione della combinazione linguistica inglese-spagnolo, per la quale è ora il motore principale. Amazon ha anche fatto piccoli passi avanti nelle altre lingue, ma con miglioramenti più limitati rispetto alla combinazione inglese-spagnolo. Ipotizziamo che questi progressi siano dovuti ad alcune modifiche generiche alle impostazioni e che siano una conseguenza del lavoro svolto per la combinazione inglese-spagnolo. I miglioramenti sembrano influenzare la gestione di alcuni caratteri speciali e delle stringhe con espressioni di misura.

Per il secondo mese consecutivo, Yandex ha apportato piccoli miglioramenti. È interessante notare che questi miglioramenti riguardano anche lo spagnolo.

Come abbiamo osservato in precedenza, non ci sono stati cambiamenti significativi. Tutti i motori hanno prestazioni analoghe. Nei prossimi mesi analizzeremo alcune aree specifiche della traduzione automatica e forniremo osservazioni generali. Naturalmente, seguiremo anche i principali sviluppi.

- Rafa Moral, Lionbridge Vice President, Innovation 


Aprile 2022

Dopo diversi mesi senza variazioni nelle prestazioni del motore di traduzione automatica, Yandex ha fatto alcuni progressi, in particolare per quanto riguarda il tedesco.

In un'analisi dettagliata, abbiamo riscontrato progressi nella gestione da parte dei motori Yandex di frasi con segni di punteggiatura, come punti interrogativi, punti esclamativi, parentesi e barre, e unità di misura. Questi sviluppi sono probabilmente dovuti ad alcune ottimizzazioni apportate alle impostazioni della traduzione automatica piuttosto che a miglioramenti nei modelli. Abbiamo tuttavia riscontrato anche un miglioramento nel monitoraggio dei termini rari, quindi i progressi di Yandex potrebbero anche essere legati ad alcuni perfezionamenti dei modelli o a un incremento delle attività di training dei dati.

Lo scorso anno in questo periodo diversi motori di traduzione automatica hanno mostrato alcuni miglioramenti che abbiamo trovato interessanti. Esiste un modello temporale associato a questi progressi? Quest'anno vedremo qualcosa di simile a quello che abbiamo osservato nel 2021? Stiamo monitorando le prestazioni della traduzione automatica di questi motori e vi riferiremo i risultati nel prossimo mese.

In generale, c'è un maggiore interesse per la valutazione dei motori di traduzione automatica. Oggi quasi tutti sono d'accordo sul fatto che la traduzione automatica sia una tecnologia matura. Le persone riconoscono l'utilità della tecnologia per quasi tutti i casi di traduzione, con o senza intervento umano e con approcci ibridi. Ma gli utenti dei servizi di traduzione automatica sono ancora alla ricerca del modo giusto per valutare, misurare e migliorare i risultati della traduzione automatica.

- Rafa Moral, Lionbridge Vice President, Innovation 


Marzo 2022

Se avete seguito queste pagine, conoscete già le nostre valutazioni comparative generiche della traduzione automatica. Ogni mese identifichiamo quali motori di traduzione automatica funzionano meglio per determinate combinazioni linguistiche e monitoriamo i miglioramenti. A marzo, le prestazioni dei diversi motori di traduzione automatica sono rimaste stabili. È una tendenza che stiamo notando già da tempo. Come abbiamo commentato il mese scorso, ciò potrebbe indicare la necessità di un nuovo paradigma di traduzione automatica.

Sebbene condividiamo risultati generici, le aziende richiedono sempre più spesso valutazioni comparative personalizzate della traduzione automatica. A differenza delle valutazioni generiche, queste valutazioni prendono in considerazione le esigenze specifiche di un'azienda per determinare quali sono i motori di traduzione automatica più vantaggiosi.

Quando un'azienda vuole iniziare a usare la traduzione automatica oppure vuole migliorare il modo in cui la sta attualmente usando, è fondamentale identificare i motori di traduzione automatica che offrono le prestazioni migliori. Quando svolgiamo valutazioni personalizzate, adottiamo un approccio simile a quello illustrato in questa pagina, ma forniamo raccomandazioni basate sul tipo di contenuto e sui requisiti di combinazioni linguistiche di un'azienda.

Sebbene le valutazioni comparative personalizzate della traduzione automatica siano disponibili già da anni, oggi la domanda è aumentata. Riteniamo che questa tendenza sia dovuta al ruolo importante che la traduzione automatica svolge nell'aiutare le aziende a raggiungere il successo in un mercato digitale.

- Rafa Moral, Lionbridge Vice President, Innovation 


Febbraio 2022

Il motore di traduzione automatica di Google ha mostrato un piccolo miglioramento nei mesi di gennaio e febbraio 2022, mentre gli altri motori monitorati sono rimasti fermi. Queste osservazioni potrebbero portarci a farci alcune domande specifiche. La traduzione automatica neurale (NMT, Neural Machine Translation) sta raggiungendo un plateau? È necessario un nuovo cambio di paradigma considerando l'incapacità dei motori di fare progressi significativi? Abbiamo osservato tendenze simili quando la traduzione automatica neurale ha sostituito la traduzione automatica statistica.

Verso la fine dell'era della traduzione automatica statistica, non si riscontravano più miglioramenti nella qualità dell'output della traduzione automatica. I diversi motori di traduzione automatica avevano inoltre raggiunto livelli di qualità simili. Oggi riscontriamo tendenze analoghe. Anche se la traduzione automatica neurale potrebbe non venire sostituita nell'immediato, se crediamo nella crescita esponenziale e nella legge dei ritorni accelerati, e se consideriamo la corsa di trent'anni della traduzione automatica basata su regole, la prominenza decennale della traduzione automatica statistica e il fatto che la traduzione automatica neurale è ora al suo sesto anno, un nuovo cambio di paradigma potrebbe non essere troppo lontano.

- Rafa Moral, Lionbridge Vice President, Innovation 


Gennaio 2022

Durante il mese di gennaio, i principali motori di traduzione automatica (MT, Machine Translation) non hanno mostrato variazioni significative nelle prestazioni. 

Google ha mostrato piccoli miglioramenti incrementali in alcuni domini e lingue. Le prestazioni della maggior parte degli altri motori sono rimaste costanti. Microsoft ha avuto alcuni miglioramenti negli ultimi mesi, ma le prestazioni si sono stabilizzate nel mese di gennaio. Nel complesso, la qualità di Google Translate continua a essere la migliore per quanto riguarda la tecnologia di traduzione automatica per utilizzo generico. 

A dicembre abbiamo aggiunto un quinto motore di traduzione automatica al nostro strumento di valutazione. Monitorando Yandex, possiamo analizzare meglio la qualità della traduzione automatica per la lingua russa.

- Rafa Moral, Lionbridge Vice President, Innovation 


Dicembre 2021 

A dicembre abbiamo aggiunto la traduzione automatica di Yandex al nostro strumento comparativo di valutazione della qualità della traduzione automatica.

In base ai nostri test, fino a questo momento Yandex:

  • Offre prestazioni migliori di MS Bing, analoghe a quelle di Google, ma non al livello di Amazon e DeepL per il russo.
  • Offre prestazioni analoghe ad Amazon e MS Bing per il tedesco.
  • Non offre prestazioni al livello dei principali motori di traduzione automatica per le altre coppie di lingue da noi monitorate.
  • Offre buone prestazioni nella gestione di frasi con lunghezza superiore a 50 parole.

Nel corso di altre osservazioni, MS Bing ha mostrato un miglioramento dell'output negli ultimi mesi del 2021. In particolare, sono migliorate le traduzioni in cinese. Anche Amazon ha fatto passi da gigante. Con l'inizio del nuovo anno, Google sta guadagnando posizioni e sta migliorando il suo output. In particolare, sono migliorate le traduzioni in spagnolo, russo e tedesco. Yandex non ha mostrato variazioni nelle prestazioni durante le cinque settimane in cui abbiamo eseguito il monitoraggio.

- Rafa Moral, Lionbridge Vice President, Innovation 


Novembre 2021

Dopo alcune settimane di sperimentazioni e fluttuazioni nelle prestazioni, gli ingegneri Microsoft che si occupano di elaborazione del linguaggio naturale hanno chiaramente raggiunto nuovi risultati. Nelle ultime settimane Bing Translator ha mostrato miglioramenti in generale e in particolare per il cinese, che hanno reso questo motore di traduzione automatica il vincitore incontrastato del mese scorso. In Bing Translator sono stati colmati alcuni gap nella maggior parte delle aree, superando così le prestazioni di alcuni dei concorrenti. Bing Translator rimane uno dei motori più adatti per il training e i miglioramenti apportati lo rendono una scelta ideale per la creazione di modelli personalizzati per contenuti specifici.

- Jordi Macias, Lionbridge Vice President, Language Excellence


Ottobre 2021

I motori di traduzione automatica di Amazon hanno continuato a evolversi in modo positivo durante il mese di ottobre, rafforzando i risultati del mese precedente. Queste ottimizzazioni continue rappresentano la seconda serie di miglioramenti incrementali apportati negli ultimi mesi.

Come promemoria, ecco alcune delle aree in cui i motori di traduzione automatica di Amazon hanno continuato a evolversi negli ultimi due mesi:

  • Passaggio verso uno stile più informale
  • Diversa modalità di gestione delle unità di misura
    • Sia le misure imperiali che quelle metriche vengono ora gestite in modo coerente
    • Le misure imperiali vengono ora visualizzate prima di quelle metriche
    • I numeri corrispondenti alle misure vengono ora tradotti e corretti
    • Il simbolo di valuta € viene ora sostituito dalla parola "Euro"

— Jordi Macias, Lionbridge Vice President, Language Excellence


Settembre 2021

Settembre si è rivelato un buon mese per i motori di traduzione automatica (MT) di Amazon. In primo luogo, l'azienda ha migliorato la qualità dell'output della traduzione automatica per il tedesco e il russo. Ci sono poi stati picchi per le combinazioni linguistiche di spagnolo e cinese. Queste ottimizzazioni rappresentano la seconda serie di miglioramenti incrementali apportati negli ultimi mesi.

Ecco alcune altre modifiche ai motori di traduzione automatica di Amazon:

  • Passaggio verso uno stile più informale
  • Diversa modalità di gestione delle unità di misura
    • Sia le misure imperiali che quelle metriche vengono ora visualizzate in modo coerente
    • Le misure imperiali vengono ora visualizzate prima di quelle metriche
    • I numeri corrispondenti alle misure vengono ora tradotti e corretti
    • Il simbolo di valuta € viene ora sostituito dalla parola "Euro"

- Yolanda Martin, specialista nella traduzione automatica di Lionbridge


Agosto 2021

Tutte le grandi aziende tecnologiche hanno sviluppato i propri motori di traduzione automatica, incluse Microsoft, Google, Amazon, Facebook e ora Apple. Anche molti altri protagonisti del mercato al di fuori degli Stati Uniti stanno prendendo parte alla competizione in quest'ambito. Chiaramente, le grandi aziende tecnologiche ritengono che la traduzione automatica e l'elaborazione del linguaggio naturale siano strumenti indispensabili nell'attuale mondo interconnesso e globale.

Tenete d'occhio quest'area mentre Lionbridge segue la competizione. Identificheremo i migliori motori di traduzione automatica in base alle esigenze specifiche di un'azienda, tenendo conto della combinazione linguistica e del tipo di contenuti.

Considerando l'elevato numero di aziende tecnologiche che stanno investendo in questo settore, ci aspettiamo che la corsa allo sviluppo delle tecnologie di traduzione automatica ed elaborazione del linguaggio naturale sia destinata ad accelerare. Senza dubbio Apple, con la sua attenzione ai dettagli e alla qualità, spingerà le altre aziende a fare sempre di più.

- Rafa Moral, Lionbridge Vice President, Innovation